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LONG-TERM GOALS 

1. The inverse scattering transform (IST) can be used for the time series analysis of laboratory and 
oceanic wave data. The approach may be viewed as a generalization of linear Fourier analysis. 

2. IST is being applied to the study of “rogue, freak or giant” ocean waves. 

3. A third long-term goal is the development of fast algorithms for numerically integrating the 
space/time dynamics of both shallow-water and deep-water wave trains. 

OBJECTIVES 

1. The objective of the present research program is the development of fast numerical 
multidimensional Fourier techniques applied to a wide range of wave modeling and data analysis 
problems. 

2. Important progress made in the past year has been the development of new methods for extending 
the nonlinear Fourier approach to arbitrary order. Thus one can now push toward the solution of the 
Euler and other higher order equations in a more systematic way that requires very little additional 
central processor time. 

APPROACH 

It is well known that equations such as the KdV, the modified KdV, the Gardner and the Kadomtsev-
Petviashvili equations are all integrable. Hyperfast models for these equations can be developed on a 
straightforward basis using methods discussed in the references [Osborne, 2003; Osborne, 2008a,b; 
Osborne, 2009]. I show here how these equations allow one to go to higher order in a kind of hierarchy 
which provides physically important wave equations containing all of the many nonlinear aspects of 
water waves. The impact on cpu requirements for a hyperfast model is however minimal, no matter 
how high the order, using the new methods discussed here. 

We first consider the Kadomtsev-Petviashvili (KP) equation  

ηt + coηx + αηηx + βηxxx + γ ∂
−
x 
1ηyy = 0 (1)  
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The constant coefficients co, α, β, γ  are given after eq. (8) below. Here η(x, y,t)  is the wave 
amplitude as a function of the two spatial variables, x , y  and time, t. The KP equation (1) is a natural 
two-space-dimensional extension of the KdV equation. The periodic KP solutions include directional 
spreading in the wave field:  

η(x, t) = 2 
∂2 

∂x2 lnθ(x, y, t |B,φ)       (2)  

Here the generalized Fourier series has the form given in (4) below, where the phase has the two 
dimensional expression: 

X(x, y, t) = kx + ly − ωt + φ (3)  

The spatial terms include both the x and y coordinates, kx  and ly , which allows wave spreading to be 
taken into account. The KP equation is the first nonlinear step toward a directional sea state; KP is 
however limited to small directional spreading. Improving the directional spreading characteristics of 
the KP equation requires the addition of physically important corrections to the equation, as discussed 
below. 

The generalized Fourier series, θ(x,t |B,φ) , is given by the expression 

N N N∞ ∞ ∞ 1i m X − m m B∑ n n ∑∑ m n mn 
n=1 2 m=1 n=1θ (x, y, t | B,φ)= ∑ ∑ ... ∑ e (4) 

m1 =−∞  m2 =−∞  mN =−∞  

where Xn = knx + lny −ωnt +φn . The function θ(x, y,t |B,φ)  is also called a Riemann theta function 
or multidimensional Fourier series. Here B is the Riemann matrix (the “spectrum” of the solution), the 
vectors k, l constitute the usual wave numbers, the vector ω  contains the frequencies and the vector φ 
forms the phases. The inverse problem associated with (2), (3) allows one to determine the Riemann 
matrix, wave numbers, frequencies and phases appropriate for solving the Cauchy problem for KP: 
Given the spatial variation of the solutions at t = 0, η(x, y,0)  , compute the solution for all time, 
η(x, y, t) . This is a necessary step for the numerical simulations presented herein. The solitons, Stokes 
waves and sine waves lie on the diagonal of the Riemann matrix; the off-diagonal terms contain the 
nonlinear interactions. 

Why is the above approach useful for hyperfast numerical simulations? Because the Riemann theta 
function can be programmed as a fast theta function transform (FTFT), just as the Fourier transform 
can be programmed as a fast Fourier transform (FFT). Therefore the numerical integration of KP (1) 
can be evaluated at specific time points, necessary only for graphical purposes or for extracting useful 
(often statistical) properties of the sea surface. This contrasts to the FFT that must be evaluated at very 
small time steps when used for the numerical integration of a nonlinear partial differential equation. 
This is one reason why the higher order methods require considerable amounts of computer time. 
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WORK COMPLETED 


The equation of interest herein is the so-called extended KP (ExKP) equation which has the following 
form: 

3−1 2 −1ut + 6βuux + uxxx + 3σ 2∂x uyy = α2u ux + 3ασux∂x uy    (5)  2 

Here α, β, σ  are arbitrary constants and the field is in 2+1 dimensions: u(x, y,t) . Note that (5) consists 
of the KP equation (1) on the left hand side with a cubic term (or so-called Gardner term) together with 
an additional spreading term, both on the right hand side. Thus the ExKP equation is superior to the KP 
equation because it extends the wave dynamics to higher waves via the cubic term and simultaneously 
improves the description of wave spreading. 

Now let us discuss the physics of ExKP. First notice that by setting the constant coefficients σ = α = 0 
we obtain the KdV equation in 1+1 dimensions: 

ut + 6βuux + uxxx = 0 
 By setting β = σ = 0  we obtain the 1+1 modified KdV equation (mKdV): 

2ut − 
3
α2u ux + uxxx = 0

2
 

 By setting σ = 0  we obtain the 1+1 Gardner equation: 

3
 2ut + 6βuux + uxxx − α2u ux = 0
2
 

 By setting α = 0  we obtain the 2+1 KP Equation: 

−1
 = 0ut + 6βuux + uxxx + 3σ 2∂x uyy 

An important result is the following Gardner transformation: 

1 1 1 −1u = βv − αvx − α 2v2 − σα∂x vy       (6)  2 4 2 

which maps ExKP (5) to the KP equation (1). For the physical case of β = 1 the above equation can 
also be referred to as an exact near-identity transformation. From this point of view the inverse is: 

1 1 1 −1v ; u + αux + α 2u2 + σα∂x uy       (7)  
2 4 2 

This is obtained by using the leading order result in the higher order terms and then solving for v. 
While the latter result (7) is not exact, i.e. it does not exactly transform KP into ExKP, the equation 
does carry out this transformation to leading order. The important point to notice is that the Gardner 
transformation (6) given above is exact; the fact that it is an inverse transformation (indicated by the 
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minus signs on the right hand side) suggests that higher order transformations of this type can lead to 
even higher-order interesting and physical wave equations, perhaps also leading to physically important 
equations at infinite order (e.g. the Euler equations, although this is still an open mathematical 
problem). Another important result is that (5) can be derived directly from the Euler equations by the 
same procedure that one uses to derive KP, an important physical verification of ExKP. 

A table of several nonlinear wave equations is given below. I show both the lower and higher order 
equations, togther with the appropriate Gardner transformations. For convenience I show the Hirota 
transformation which carries each of the wave equations to its associated bilinear form, important for 
numerical modeling applications. The red boxes emphasize the ExKP equation and its associated 
Gardner transformation. 

Lower Order 
Equation 

Hirota 
Transf. 

Gardner Transf. Higher Order Equation Hirota 
Transf. 

KdV Equation: 

ut + 6βuux + uxxx = 0 u = 2∂xx lnθ u = −  
1 

2 
αvx − 

1 

4 
α 2v2 

1+1 Modified KdV: 

ut − 
3 

2 
α 2u2ux + uxxx = 0 u = i∂x ln 

G 
F 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

KdV Equation: 

ut + 6βuux + uxxx = 0 u = 2∂xx lnθ 
u = 

βv − 
1 

2 
αvx − 

1 

4 
α 2v2 

1+1 Gardner Equation: 
ut + 6βuux + uxxx = 

3 

2 
α 2u2ux 

2+1 KP Equation: 
ut + 6βuux + uxxx + 

3σ 2∂x 
−1uyy = 0 

u = 2∂xx lnθ u = βv − 
1 
2 
αvx − 

1 
4 
α 2v2 

− 
1 
2 
σα∂x 

−1vy 

2+1 ExKP 
ut + 6βuux + uxxx + 3σ 2∂x 

−1uyy 

− 
3 
2 
α2u2ux − 3ασux∂x 

−1uy = 0 

u = 
2 
α 
∂x ln 

G 
F 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

We see that the sequence of equations from KdV, mKdV, KP, 1+1 Gardner to 2+1 ExKP forms a kind 
of natural hierarchy of equations marching to higher order. One leaps from KdV to 1+1 Gardner to 
ExKP, or from KP to ExKP. One is reminded of the use of near-identity transformations as introduced 
by Kodama to study higher order, asymptotically integrable equations. In the present case the Gardner 
transformations are however exact. 

RESULTS 

For physical and engineering purposes the ExKP equation can be written in the following dimensional 
form: 

ηt + coηx + αηηx + βηxxx + γ ∂
−
x 

1ηyy = α1η
2ηx + γ1ηx∂

−
x 

1ηy    (8)  
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Where 

3co coh2 co 15 co 15 coco = gh , α = , β = , γ = , α1 = 
h2 , γ 1 = 

2h 6 2 8 8 h 

As usual g is the acceleration of gravity, h is the depth and co  is the linear phase speed. Thus we have 
the KP equation with the addition of a cubic on the right hand side, together with an additional, 
nonlinear spreading term. ExKP substantially improves the KP equation because we now can have 
higher waves due to the cubic term, α1η

2ηx , and we improve the spreading characteristics with the 

nonlinear, non-local term γ 1ηx∂
−
x 

1ηy . Both of these are important for modeling purposes. 

The ExKP equation is not only a substantial improvement for nonlinear surface wave dynamics, but it 
also provides very important contributions necessary for internal wave dynamics. It contains not only 
KdV type solitons, but soliton-hole pairs as in the modified KdV equation, the “fat” solitons of the 
Gardner equation, all together with directional spreading out to second order. Some of these are shown 
in Figs. 1 and 2. In Fig. 3 I show an example of a hole solution which forms due to the cubic Gardner 
term in (8). 

In Fig. 4 I show the wave field for a sample preliminary run at a single instant of time for a simulation 
of the ExKP equation. I now discuss the numerical model. The basic procedure is shown in the flow 
chart of Fig. 5. One first chooses the desired directional spectrum (Pierson-Moskowitz or JONSWAP 
with an appropriate directional spreading function) using the linear Fourier transform. Then the 
Riemann spectrum (Riemann matrix, frequencies, phases) are computed on this basis. This process 
requires considerable space to explain and will be omitted from this short report for lack of space. The 
important ingredient is that we need to compute two sets of phases for the Riemann spectrum, a 
departure from the model for the KP equation. Two Riemann theta function spectra are then computed 
as a function of two-dimensional wave number and time: Fmn (t) ≡ F(km ,ln , t) ,  Gmn (t) ≡ G(km , ln ,t) .  
The space-time evolution of the theta functions is then computed by converting the spectra to space and 
time by a 2D FFT algorithm: F(x, y,t) ,  G(x, y,t) .  Then the surface wave field is computed by the 
Hirota transformation: 

2 ⎛ G ⎞ u = ∂x ln⎝⎜ ⎠⎟λ F 

And so we have the solution of the ExKP equation, which is about three orders of magnitude faster 
than the more traditional split-step algorithm! 
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 (a) 

(b) 

Figure 1. (a) Example of a single pulse soliton solution of the Kortweg-deVries equation. (b) Examples 
of single pulse solitons, both positive and negative (a hole), from the 

 modified Kortweg-deVries equation. 
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Figure 2. Example of a single “fat” pulse soliton from the Gardner equation. This solution is more 
appropriate for describing certain kinds of highly nonlinear internal waves. 

Figure 3. Evolution of a hole state from the Gardner equation. The hole is seen as a channel 
beginning near space coordinate 96 and time 80. 
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Figure 4. Example of a wave simulation with the ExKP equation. 
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Solving Nonlinear PDEs With 
The Multi-dimensional Fourier 

Transform 

Inputs: T . The linear Fourier modes are 
defined by: 

km , ln , Amn , φmn , ωmn , m, n = 1,2...N Nonlinear 

ωmn = ωmn (km ,ln ) 

Convert the Fourier modes to new inputs to the multi
dimensional Fourier series: 

km , ln ,ωmn , φmn ,Φmn m, n = 1,2...N 
Riemann Matrix: Bmn 

Dispersion 
Relation 

t = 0 

Yes 
t > T ? 

Compute the Multi-dimensional 

Fourier Series and Collapse them
 
onto the Ordinary Linear Fourier 

Modes with Time Dependence: 


Fmn (t) ≡ F(km ,ln , t)
 
Gmn (t) ≡ G(km ,ln ,t)
 

t = t + Δt 

Solution of the Nonlinear Wave Equation 

Figure 5. Schematic 
of a higher order 
algorithm for the 
hyperfast numerical 
integration of the 
ExKP equation. 

N =1 N /2
ikm x+iln y−iωmnt +iφmnF(x, y, t) = ∑ ∑ Fmn (t)e

m=−N /2 n=−N /2 
N =1 N /2

ikm x+ilny−iωmnt+iφmnG(x, y, t) = ∑ ∑ Gmn (t)e
m=−N /2 n=−N /2 

End 

η(x, y, t) = 
2 
λ 
∂x ln 

G(x, y, t) 
F(x, y, t) 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 
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TRANSITIONS 

Transitions expected are related to the use of the codes as guidance to ships and unmanned, unteathered 
vehicles as the kind of environment in which one resides and for the real time sampling of the 
environment, including the acoustic environment. 

RELATED PROJECTS 

An intimate relationship between our results and other projects exists because the sea surface provides 
a major forcing input to many kinds of offshore activities, including the dynamics of floating and 
drilling vessels, barges, risers and tethered vehicles. The present work leads to a nonlinear 
representation of the sea surface forcing and vessel response for shallow water waves. 
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